Beyond Forward Shortcuts: Fully Convolutional Master-Slave Networks (MSNets) with Backward Skip Connections for Semantic Segmentation
نویسندگان
چکیده
Recent deep CNNs contain forward shortcut connections; i.e. skip connections from low to high layers. Reusing features from lower layers that have higher resolution (location information) benefit higher layers to recover lost details and mitigate information degradation. However, during inference the lower layers do not know about high layer features, although they contain contextual high semantics that benefit low layers to adaptively extract informative features for later layers. In this paper, we study the influence of backward skip connections which are in the opposite direction to forward shortcuts, i.e. paths from high layers to low layers. To achieve this – which indeed runs counter to the nature of feed-forward networks – we propose a new fully convolutional model that consists of a pair of networks. A ‘Slave’ network is dedicated to provide the backward connections from its top layers to the ‘Master’ network’s bottom layers. The Master network is used to produce the final label predictions. In our experiments we validate the proposed FCN model on ADE20K (ImageNet scene parsing), PASCAL-Context, and PASCAL VOC 2011 datasets.
منابع مشابه
Pooling-free fully convolutional networks with dense skip connections for semantic segmentation, with application to segmentation of white matter lesions
متن کامل
Investigating the feature collection for semantic segmentation via single skip connection
Since the study of deep convolutional neural network became prevalent, one of the important discoveries is that a feature map from a convolutional network can be extracted before going into the fully connected layer and can be used as a saliency map for object detection. Furthermore, the model can use features from each different layer for accurate object detection: the features from different ...
متن کاملEfficient Yet Deep Convolutional Neural Networks for Semantic Segmentation
Semantic Segmentation using deep convolutional neural network pose more complex challenge for any GPU intensive work, as it has to compute million of parameters resulting to huge consumption of memory. Moreover, extracting finer features and conducting supervised training tends to increase the complexity furthermore. With the introduction of Fully Convolutional Neural Network, which uses finer ...
متن کاملDeeply supervised neural network with short connections for retinal vessel segmentation
The condition of vessel of the human eye is a fundamental factor for the diagnosis of ophthalmological diseases. Vessel segmentation in fundus image is a challenging task due to low contrast, the presence of microaneurysms and hemorrhages. In this paper, we present a multiscale and multi-level deeply supervised convolutional neural network with short connections for vessel segmentation. We use ...
متن کاملThe Importance of Skip Connections in Biomedical Image Segmentation
In this paper, we study the influence of both long and short skip connections on Fully Convolutional Networks (FCN) for biomedical image segmentation. In standard FCNs, only long skip connections are used to skip features from the contracting path to the expanding path in order to recover spatial information lost during downsampling. We extend FCNs by adding short skip connections, that are sim...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1707.05537 شماره
صفحات -
تاریخ انتشار 2017